Express Computer
Home  »  Artificial Intelligence AI  »  AI can detect anxiety, depression in child’s speech

AI can detect anxiety, depression in child’s speech

The research suggests a machine learning algorithm might provide a fast and easy way of diagnosing anxiety and depression

0 379

Researchers have developed an artificial intelligence (AI)-based system that can detect signs of anxiety and depression in the speech patterns of young children. The research published in the Journal of Biomedical and Health Informatics suggests a machine learning algorithm might provide a fast and easy way of diagnosing anxiety and depression — conditions that are difficult to spot and often overlooked in young people.

“We need quick, objective tests to catch kids when they are suffering,” said study lead author Ellen McGinnis, PhD candidate at the University of Vermont in the US. “The majority of kids under eight are undiagnosed,” McGinnis added.

Early diagnosis of these conditions is critical because children respond well to treatment while their brains are still developing, but if they are left untreated they are at greater risk of substance abuse and suicide later in life.

For the study, the researchers used an adapted version of a mood induction task called the Trier-Social Stress Task, which is intended to cause feelings of stress and anxiety in the participant. The researchers picked a group of 71 children between ages 3 and 8 who were asked to improvise a three-minute story, and told that they would be judged based on how interesting it was.

The researcher acting as the judge remained stern throughout the speech, and gave only neutral or negative feedback. After 90 seconds, and again with 30 seconds left, a buzzer would sound and the judge would tell them how much time was left.

“The task is designed to be stressful, and to put them in the mindset that someone was judging them,” McGinnis said.

The children were also diagnosed using a structured clinical interview and parent questionnaire, both well-established ways of identifying internalising disorders in children.

The researchers then used a Machine Learning algorithm to analyse statistical features of the audio recordings of each kid’s story and relate them to the child’s diagnosis. They found the algorithm was highly successful at diagnosing children.

“The algorithm was able to identify children with a diagnosis of an internalizing disorder with 80% accuracy, and in most cases that compared really well to the accuracy of the parent checklist,” said senior study author Ryan McGinnis from the University of Vermont.

It can also give the results much more quickly — the algorithm requires just a few seconds of processing time once the task is complete to provide a diagnosis, the study said.

Get real time updates directly on you device, subscribe now.

Leave A Reply

Your email address will not be published.

LIVE Webinar

Digitize your HR practice with extensions to success factors

Join us for a virtual meeting on how organizations can use these extensions to not just provide a better experience to its’ employees, but also to significantly improve the efficiency of the HR processes
REGISTER NOW 

Stay updated with News, Trending Stories & Conferences with Express Computer
Follow us on Linkedin
India's Leading e-Governance Summit is here!!! Attend and Know more.
Register Now!
close-image
Attend Webinar & Enhance Your Organisation's Digital Experience.
Register Now
close-image
Enable A Truly Seamless & Secure Workplace.
Register Now
close-image
Attend Inida's Largest BFSI Technology Conclave!
Register Now
close-image
Know how to protect your company in digital era.
Register Now
close-image
Protect Your Critical Assets From Well-Organized Hackers
Register Now
close-image
Find Solutions to Maintain Productivity
Register Now
close-image
Live Webinar : Improve customer experience with Voice Bots
Register Now
close-image
Live Event: Technology Day- Kerala, E- Governance Champions Awards
Register Now
close-image
Virtual Conference : Learn to Automate complex Business Processes
Register Now
close-image