Express Computer
Home  »  News  »  Researchers show how wearable circuits can be printed directly on human skin

Researchers show how wearable circuits can be printed directly on human skin

0 184

Wearable electronics are getting smaller, more comfortable and increasingly capable of interfacing with the human body. To achieve a truly seamless integration, electronics could someday be printed directly on people’s skin. As a step toward this goal, researchers reporting in ACS Applied Materials & Interfaces have safely placed wearable circuits directly onto the surface of human skin to monitor health indicators, such as temperature, blood oxygen, heart rate and blood pressure.

The latest generation of wearable electronics for health monitoring combines soft on-body sensors with flexible printed circuit boards (FPCBs) for signal readout and wireless transmission to health care workers. However, before the sensor is attached to the body, it must be printed or lithographed onto a carrier material, which can involve sophisticated fabrication approaches. To simplify the process and improve the performance of the devices, Peng He, Weiwei Zhao, Huanyu Cheng and colleagues wanted to develop a room-temperature method to sinter metal nanoparticles onto paper or fabric for FPCBs and directly onto human skin for on-body sensors. Sintering — the process of fusing metal or other particles together — usually requires heat, which wouldn’t be suitable for attaching circuits directly to skin.

The researchers designed an electronic health monitoring system that consisted of sensor circuits printed directly on the back of a human hand, as well as a paper-based FPCB attached to the inside of a shirt sleeve. To make the FPCB part of the system, the researchers coated a piece of paper with a novel sintering aid and used an inkjet printer with silver nanoparticle ink to print circuits onto the coating. As solvent evaporated from the ink, the silver nanoparticles sintered at room temperature to form circuits. A commercially available chip was added to wirelessly transmit the data, and the resulting FPCB was attached to a volunteer’s sleeve. The team used the same process to sinter circuits on the volunteer’s hand, except printing was done with a polymer stamp. As a proof of concept, the researchers made a full electronic health monitoring system that sensed temperature, humidity, blood oxygen, heart rate, blood pressure and electrophysiological signals and analyzed its performance. The signals obtained by these sensors were comparable to or better than those measured by conventional commercial devices.

Get real time updates directly on you device, subscribe now.

Leave A Reply

Your email address will not be published.

LIVE Webinar

Digitize your HR practice with extensions to success factors

Join us for a virtual meeting on how organizations can use these extensions to not just provide a better experience to its’ employees, but also to significantly improve the efficiency of the HR processes
REGISTER NOW 

Stay updated with News, Trending Stories & Conferences with Express Computer
Follow us on Linkedin
India's Leading e-Governance Summit is here!!! Attend and Know more.
Register Now!
close-image
Attend Webinar & Enhance Your Organisation's Digital Experience.
Register Now
close-image
Enable A Truly Seamless & Secure Workplace.
Register Now
close-image
Attend Inida's Largest BFSI Technology Conclave!
Register Now
close-image
Know how to protect your company in digital era.
Register Now
close-image
Protect Your Critical Assets From Well-Organized Hackers
Register Now
close-image
Find Solutions to Maintain Productivity
Register Now
close-image
Live Webinar : Improve customer experience with Voice Bots
Register Now
close-image
Live Event: Technology Day- Kerala, E- Governance Champions Awards
Register Now
close-image
Virtual Conference : Learn to Automate complex Business Processes
Register Now
close-image